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Abstract. We present a simple and efficient method for constructing a cut-
clustering hierarchy as introduced by Flake et al. Cut-clusterings excel by a
clearly indicated membership of the vertices to the clusters due to strong con-
nections inside the clusters compared to only weak connections outside. Their
coarseness depends on a parameter that provides a quality guarantee in terms of
expansion, which is NP-hard to compute. In this work we introduce a paramet-
ric search approach that guarantees the completeness of the resulting hierarchy
and supersedes the necessity of choosing feasible parameter values in advance or
applying a binary search to find those values. Our method is easy to implement
and in a brief running time experiment it turns out to be significantly faster than
a binary search. We further investigate the resulting clusterings with respect to
modularity, a quality measure widely used in practice. In this context we propose
a parameter-free approach that helps to estimate how well a graph can be gener-
ally clustered by cut-clusterings. With due regard to this estimation the algorithm
of Flake et al. competes surprisingly well with respect to reliable reference clus-
terings, although it is not designed to optimize modularity. Further experiments
focusing on the given guarantee on expansion exhibit that the actual expansion is
even better than guaranteed and compared to trivial bounds the guarantee consti-
tutes a true gain of knowledge.

1 Introduction
Clustering a graph means finding internally dense subgraphs, called clusters, that are
only loosely connected to the remainder of the graph. The growing interest in graph
clustering during the last decades has been driven by applications in physics and biol-
ogy as well as sociology and many other fields. Attempts of formalizing the properties
that characterize a set of good clusters resulted in a variety of different quality mea-
sures, which still affect the design of algorithms. Flake et al. [3], however, postulate a
different approach. They search for clusterings where the membership of the vertices
to a cluster is clearly indicated by strong connections inside the cluster while the con-
nections to other clusters are weaker, a condition not expressible by any of the previous
measures. This is what we call a tight clustering in the following. The strict behavior of
tight clusterings—not clearly assigned vertices remain unclustered—is desirable when-
ever it is essential that ambiguous cases are interpreted by human experts as for example
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in sociology applications. Flake et al. introduce an algorithm that exploits properties of
minimum s-t-cuts in order to find a tight clustering depending on a parameter. This pa-
rameter controls the coarseness of the resulting clustering and constitutes a guarantee
on intra-cluster expansion, a common quality index, which is hard to compute. Different
parameter values result in at most n− 1 different clusterings, which form a hierarchy.
Having a hierarchy of tight clusterings at hand, it is then possible to choose the best
clustering with respect to any quality measure that suits a particular application.
Our Contribution. We characterize four different types of tight clusterings and in-
troduce the problem Tight Clustering, which asks for an optimal tight clustering of a
designated type with respect to a given quality measure. In this light we investigate the
behavior of the cut-clustering algorithm of Flake et al. We develop a simple paramet-
ric search approach for efficiently constructing a complete cut-clustering hierarchy and
provide a brief running time experiment in which our method outperforms a naive bi-
nary search, which contrariwise gives no guarantee on finding all different clusterings
in the hierarchy. We further conduct a comparative analysis of the modularity values
reachable by cut-clusterings. As reference we use a greedy modularity-based approach.
This, however, is not restricted to tight clusterings and thus benefits from a larger search
space. In order to assess the results as fair as possible we, hence, introduce a parameter-
free method that on the other hand helps to exclude the existence of tight clusterings
in instances of special shape. Our experiments demonstrate that the algorithm of Flake
et al. competes surprisingly well with respect to the objective of Tight Clustering and
modularity, and we reveal that the restriction to tight clusterings not necessarily causes
a substantial loss of modularity. Finally, we compare the guaranteed intra-cluster expan-
sion of the cut-clusterings to the expansion of the modularity-based references. Since
expansion is hard to compute, we consider lower bounds. Our study gives evidence
that trivial bounds do not match up to the given guarantee, and an analysis of special
non-trivial bounds further indicates that also the true expansion of the cut-clusterings
surpasses the modularity-based references.
Related Work. The cut-clustering algorithm of Flake et al. [3], CutC as a shorthand, is
the protagonist in our work. The notion of tight clusterings is introduced in [1], however,
there the clusters are called web-communities. The implementation of the modularity-
based reference algorithm, which is a greedy approach based on vertex moves [2], we
took from Lisowski [15]. The notion of modularity was introduces in [10], Montgolfier
et al. [7] study the asymptotic behavior of modularity in selected graph classes, which
helps us to explain some outlier results in our experiments. Apart from these, there is
a huge number of publications on clustering algorithms and quality measures, for an
overview see [8]. In our proofs we finally exploit some insights and lemmas on mini-
mum s-t-cuts that date back to Gomory and Hu [4] and Gusfield [5].

2 Preliminaries

Throughout this work we consider a simple, undirected, weighted graph G = (V,E,c)
with vertex set V , edge set E and a non-negative edge cost function c. In unweighted
graphs we count each edge by one. We denote the number of vertices (edges) by n := |V |
(m := |E|) and the costs of a set E ′ ⊆ E by c(E ′) := ∑e∈E ′ c(e). Whenever we consider
the degree deg(v) of v ∈V , we implicitly mean the sum of all edge costs incident to v.

2



Table 1. Overview of different types of tight subgraphs.

A subgraph S⊆V is a WC SC sSC ES

WC ∀u ∈ S c({u},S\{u})> c({u},V \S) x
SC ∃s ∈ S : ∀U ⊂ S, s /∈U c(U,S\U)≥ c(U,V \S) x

strict SC ∃s ∈ S : ∀U ⊂ S, s /∈U c(U,S\U)> c(U,V \S) x x
ES ∀U ⊂ S c(U,S\U)> c(U,V \S) x x x x

With S,T ⊂ V we write c(S,T ) for the costs of all edges having one endpoint in S and
one in T . If S,T induce a cut in G, c(S,T ) describes the costs of this cut. Let (S,T )
denote a minimum s-t-cut, s ∈ S, t ∈ T . The cut (S,T ) is called the community cut of s
with respect to t if |S| is minimum for all minimum s-t-cuts in G. Set S is the unique
community of s while s is a representative of S, denoted by r(S), not necessarily unique.

We reserve the term node for compound vertices of abstracted graphs, which may
contain several basic vertices. A contraction by C ⊆ V means replacing the set C in G
by a single node and leaving this node adjacent to all former adjacencies u of vertices
in C, with costs equal to the sum of all former edges between C and u.

Our understanding of a clustering C(G) is a partition of V into subsets C1, . . . ,Ck,
which define vertex-induced subgraphs, called clusters. A cluster is called trivial if
it corresponds to a connected component. A vertex that forms a non-trivial singleton
cluster we consider as unclustered. A clustering is trivial if it consists of trivial clus-
ters or if k = n, i.e., all vertices are unclustered. A hierarchy of clusterings is a sequence
C1(G)≤ ·· · ≤ Cr(G) such that Ci(G)≤C j(G) implies that each cluster in Ci(G) is a sub-
set of a cluster in C j(G). We say Ci(G)≤ C j(G) are hierarchically nested. Furthermore,
we distinguish four types of tight clusterings: Those consisting of web-communities
(WC), source-communities (SC), strict source-communities and extreme sets (ES). Ta-
ble 1 gives exact definitions of the notions of the tight subgraphs in the clusterings and
an overview in which other types a particular type is nested. SCs are characterized by
the following (for a proof see the full version [16]).

Lemma 1. A set S ⊂ V is a source-community of a vertex s ∈ S if and only if there
exists a set T ⊂ V such that (S,V \S) is a minimum s-T -cut in G = (V,E,c). We call s
the representative r(S) of S.

Remark 1. For an SC S it holds c(S,V \ S) ≤ deg(s). Otherwise it would be c(S \
{s},S) > c(S \ {s},V \ S). Furthermore, let S ⊂ V denote a community of s with re-
spect to t. Then, due to the uniqueness and minimality of S, V \S is the unique (inclu-
sion)maximal SC of t with s /∈V \S, and S is a strict SC of s.

Tight Clustering. Tight Clustering is the problem of finding a tight clustering of max-
imum quality. Regarding the different types of tight clusters in Table 1 and the variety
of existing quality indices, Tight Clustering encompasses a whole family of problems.
In this work, we focus on modularity as objective quality measure, and we require
the clusters to be at least source-communities, as SCs are closely related to mini-
mum s-t-cuts, which can be efficiently calculated. In contrast, decomposing a graph
into k web-communities is NP-hard [3], whereas all extreme sets can be computed in
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Table 2. Overview of intra-cluster expansion bounds.

cut expansion Ψ(S,C \S) : c(S,C\S)
min{|S|,|C\S|} guarantee Ψg(C) : by parameter

trivial lower bound Ψ`(C) : c(A,C\A)
b|C|/2c non-trivial bound Ψa(C) : minC∈CΨa(C)

O(nm+ n2 logn) time [6]. The latter are either nested or disjoint. Thus, for ESs Tight
Clustering can be efficiently solved if the quality index is easy to calculate. We are in-
terested in how well CutC approximates a solution of Tight Clustering with respect to
modularity and SCs.
Quality Measures. A quality measure for clusterings is a mapping to real numbers.
Depending on the measure, either high or low values correspond to high quality. The
measures considered in this work, modularity and intra-cluster expansion, indicate high
quality by high values.

Modularity bases on the total edge costs covered by clusters. The values range
between −0.5 and 1 and express the significance of a given clustering compared to
a random clustering. Formally, the modularity M(C) of a clustering C is defined as
M(C) := ∑C∈C c(EC)/c(E)−∑C∈C(∑v∈C deg(v))2/4c(E)2, where EC denotes the set
of edges with both endpoints in C.

The intra-cluster expansion of a clustering derives from the expansion defined for
cuts. The expansion Ψ(S,C \ S) of a cut (S,C \ S) in a cluster C evaluates the ratio
of the costs and the size of the cut and is given in Table 2. The expansion Ψ(C) of
a cluster equals the minimum expansion of all cuts in C. The intra-cluster expansion
Ψ(C) of a clustering finally is the minimum expansion of all clusters in C. Note that
expansion is not defined for singleton clusters. Thus, only non-singleton clusters count
for Ψ(C). Trivial clusterings consisting of singleton clusters are omitted in the respec-
tive experiments. Computing Ψ(C) is known to be NP-hard, however, a trivial lower
bound Ψ`(C) can be easily determined from any global minimum cut (A,C \A) (see
Table 2). The expansion of such a minimum cut further constitutes an upper bound
on Ψ(C). We denote this by Ψu(C). In our experiments we compare the analog trivial
bounds Ψ`(C) and Ψu(C) to the guarantee given by the parameter of CutC, which we
denote by Ψg(C). We further consider an alternative non-trivial lower bound Ψa(C) re-
sulting from individually applying CutC to the subgraphs induced by the clusters. For
those subgraphs we want CutC to return the trivial clustering that consists of the whole
subgraph. This can be reached by accordingly choosing the parameter of CutC, which
controls the coarseness. The chosen parameter value then constitutes a non-trivial bound
Ψa(C) on the expansion of the considered cluster/subgraph. Since this method consid-
ers the clusters as independent instances ignoring the edges between the clusters, the
resulting bound Ψa(C) often lies above Ψg(C).

3 The Algorithms

In this section we review the parametric cut-clustering approach of Flake et al. and
introduce a simple method for efficiently computing all different clusterings in the pa-
rameter range. We further give a short idea of the parameter-free approach we use to
exclude the existence of tight clusterings in some particular cases.
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3.1 Basic and Hierarchical Cut-Clustering
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Fig. 1. Clustering hierarchy by CutC.
Note that αmax < α0, Cmax > C0.

The basic CutC algorithm of Flake et al. works
as follows: Given a graph G and parameter
α > 0, as a preprocessing step augment G by
inserting an artificial vertex t and connecting t
to each vertex in G by an edge of costs α . De-
note the resulting graph by Gα = (Vα ,Eα ,cα).
Then apply CutC by iterating V and comput-
ing a community with respect to t for each
vertex not yet contained in a community. Since communities are either disjoint or
nested we finally get a set of (inclusion)maximal communities decomposing V . We
call such a decomposition a cut-clustering. It inherits the uniqueness of the com-
munities and, according to Remark 1, embodies a tight clustering C of strict SCs.
Furthermore it holds Ψ(C) ≥ α . Applying CutC iteratively with decreasing param-
eter values yields a hierarchy of at most n different clusterings (cp. Fig. 1). Note
that for α0 equal to the maximum edge costs in G CutC returns the trivial clus-
tering consisting of singletons, while αmax = 0 yields the connected components.

Algorithm 1: HIERARCHICAL CUTC
Input: α0 = max{c(e)|e ∈ E}, Gα0

1 C0(G)←{{v} | v ∈V}; i← 0
2 forall the v ∈V do r({v})← v
3 while Ci(G) differs from conn. comp. do
4 choose αi+1 < αi
5 G′αi+1

← contract Ci(G) in Gαi+1

6 Ci+1(G)← CutC(G′αi+1
)

7 i← i+1

8 return C0, . . . ,Ci

Algorithm 1 describes a naive hi-
erarchical approach, which exploits
the hierarchical nesting property in
order to shrink the next instance
by contracting the previous clusters
(line 5). The crucial point with this
approach, however, is the choice of α .
If we choose the next value too high
we get the previous clustering again,
which implies unnecessary effort. If
we choose the next value too low
we possibly miss a meaningful clus-
tering. Flake et al. propose a binary
search approach for the choice of α , however, this necessitates a discretization of the
parameter range and still does not prevent missing clusterings. That is why we introduce
a simple parametric search approach for constructing a complete hierarchy.

3.2 Simple Parametric Search Approach

Our simple approach for constructing a complete hierarchy of cut-clusterings exploits
the properties of cut-cost functions. The cut-cost function ωC of a set C ∈ V is a linear
function depending on α that represents the costs of cut (C,Vα \C) in Gα .

ωC :R+
0 −→ [c(C,V \C),∞)⊂R+

0

ωC(α) := c(C,V \C)+ |C| α
For two consecutive hierarchy levels Ci < Ci+1 we call α̂ the breakpoint if CutC returns
Ci for α̂ and Ci+1 for α̂ − ε . By construction, each breakpoint is an intersection point
of the cut-cost functions of two clusters Ci ⊂C j. Thus, the idea is to compute relevant
intersection points and check if they yield new clusterings.
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Theorem 1. Let Ci < C j denote two different clusterings with parameter values αi >α j.
In time O(|Ci|) a parameter value αm with α j < αm ≤ αi can be computed such that
1) Ci ≤ Cm < C j, and 2) Cm = Ci implies that αm is the breakpoint between Ci and C j.

Proof. We observe that 1) two functions ωCi and ωC j with Ci ⊂C j intersect, as by con-
struction it is c(C j,V \C j)≤ c(Ci,V \Ci) and |C j|> |Ci|. For the intersection point α ′ it
holds ωCi(α)> ωC j(α) if α < α ′ and ωCi(α)< ωC j(α) if α > α ′ (cp. Fig. 2). Consider
2) a cluster C j ∈ C j, a child Ci ∈ Ci of C j (i.e., Ci ⊂C j) and the intersection point α ′j of
ωCi and ωC j . It is α ′j ≤ αi as otherwise (by 1) ωC j(αi) < ωCi(αi), and thus, C j 3 r(Ci)
would be a cheaper community in Gαi . If 3) r(C j) ∈Ci it is α ′j > α j. Otherwise (by 1)
ωCi(α j)≤ ωC j(α j), |Ci|< |C j|, and Ci would be a smaller community in Gα j .

To determine αm let α̂ j := maxCi⊂C j{α ′j}, suppose α̂ j := ∞ if C j is also a cluster on
level Ci. Finally define αm := minC j∈C j{α̂ j}. Due to 1)–3), α j < αm ≤ αi and αm can
be computed in time O(|Ci|). Let Cm denote the result of CutC when applied to Gαm .

Claim 1: Cm 6= C j. Let C j ∈ C j denote a cluster with α̂ j = αm. It holds αm ≥ α ′j for
all children Ci of C j and (by 1) ωCi(αm)≤ ωC j(αm), |Ci|< |C j|. This is, C j /∈ Cm.

Claim 2: If Cm = Ci then αm is the breakpoint between Ci and C j. Let Ci ∈ Cm denote
a child with α ′j = α̂ j of any cluster C j. Due to the construction of αm it is α ′j ≥ αm and
(by 1) ωC j(αm−ε)< ωCi(αm−ε). For any set C′ with Ci ⊂C′ ⊂C j ωC′ also intersects
ωC j in α ′j but with lower slope. Thus, C j is the community of r(Ci) in Gαm−ε .

Theorem 1 allows for a simple parametric search starting with the trivial clusterings
C0 < Cmax (α0 > αmax). In contrast to a binary search on the discretized parameter
range this approach definitely returns a complete hierarchy.

ωCi

ωCj

α′ α

ω(α)

Fig. 2. Intersecting
cut-cost functions.

Running time. The parametric search also outperforms the
binary search on running times, since it calls CutC at most
twice per level in the hierarchy. This yields a running time of
O((h−2)T (n)) with h the number of levels and T (n) the worst
case running time for CutC, compared to O(h log(d)T (n)) of
the binary search, where d� n is the number of discretization
steps. Furthermore, the hierarchical nesting property still al-
lows to contract the clusters on the lower level before applying
CutC, and by scheduling the recursive calls carefully such that steps descending into
the lower part are executed first we can even reuse the previously contracted structure.

As a proof of concept we conduct a brief experiment on running times of the
parametric search and the binary search. The implementation was realized within the
LEMON framework [14], version 1.2.1. The max-flow implementation provided by
LEMON runs in O(n2√m). For details on instances see Section 4. In order to discretize
the continuous parameter range for the binary search, we use between 210 and 230 steps
depending on the size of the instances. Comparing the resulting hierarchies to the com-
plete ones confirms this discretization being detailed enough to find all levels for most
of the instances. Nevertheless, we do not know how far from optimal our discretization
is, although we tried to keep the number of steps low. The difficulty to determine a
good discretization is one of the main drawbacks of the binary search approach. Both
algorithms run on an AMD Opteron Processor 252 with 2.6 GHz and 16 GB RAM.
Table 3 lists ascending CPU times of the parametric search without contraction (PasS).
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Table 3. Running times of the parametric search without contraction (ParS) and the binary search
with (BinS cont.) and without contraction (BinS). Instances sorted by CPU times of ParS. Times
longer than six days are marked by *. See also the full version. [16].

graph n m h ParS [m:s] BinS cont. [fac] BinS [fac]
celegans metabolic 453 2025 8 0.300 7.620 8.380
celegansneural 297 2148 17 0.406 8.653 9.919
netscience 1589 2742 38 4.310 4.030 11.952
power 4941 6594 66 1:25.736 8.773 15.742
as-22july06 22963 48436 33 39:54.495 12.419 20.583
cond-mat 16726 47594 80 44:15.317 14.917 27.425
rgg n 2 15 32768 160240 46 245:25.644 32.748 22.573
G n pin pout 100000 501198 4 369:29.033 * *
cond-mat-2005 40421 175691 82 652:32.163 * 21.446

The factors listed for the binary search with contraction (BinS cont.) and without (BinS)
describe how much longer the applications run compared to ParS.

ParS outperforms both binary search approaches by a factor of four up to 32. How-
ever, the running time does not only depend on the input size but also on the number
of different levels in the hierarchy. This effect can be nicely observed at the two last in-
stances. Although G n pin pout is the biggest graph in this list it takes less time to find
four levels therein than constructing 82 levels in the smaller instance cond-mat-2005.
The random geometric graph rgg n 2 15 further demonstrates the impact of constant
factors hidden in the asymptotic running time of BinS cont. Asymptotically both binary
search approaches are comparable since contraction takes only linear time in terms of
m, and is thus dominated by the max-flow computation. In practice BinS cont. performs
at least 45 contractions for this instance, each merging only few vertices. Thus, the
decreasing size of the graph does not offset the additional costs for contraction.

3.3 Parameter-Free Exclusion Approach

Our parameter-free exclusion approach (ParFree as a shorthand) aims at finding mean-
ingful maximal SCs for most of the vertices in a given instance. If these maximal SCs
are still small we conclude that there exists no coarser tight clustering of nice clusters.

ParFree considers all components separately. A maximal SCs is meaningful if it
contains at most half of the vertices of the current component. Components that are
smaller than half of the largest component in G become trivial clusters with an arbitrary
vertex as representative, which is marked green in order to illustrate the special type of
this cluster. Any other component H is decomposed into SCs by iterating the vertices
in H in a non-increasing order by their weighted degrees. Thereby the SCs are marked
with the help of further colors indicating the individual properties of the SCs.

The first vertex designates the source s. The algorithm consecutively computes the
community S of s with respect to the next vertex t that is not yet covered by an SC. If
|H\S| ≤ |H|/2 and does not intersect any previously found SC, H\S is the maximal
SC of t not containing s (cp. Remark 1). Thus t is marked blue. If |H \ S| ≤ |H|/2 but
intersects with another SC, H \S is replaced by a non-intersecting SC Q of t according
to Gusfield [5] and Gomory and Hu [4] (see Lemma 3 in [16]). Since Q is no longer
maximal, t is marked red. The representative of any other SC nested in Q becomes
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uncolored again. If |S|< |H|/2 vertex t becomes the current source and S is an SC of s
according to Remark 1; then s is also marked red. In the end all vertices are assigned to
SCs apart from the source considered last. This source s is marked orange.

In a post-processing step the algorithm then searches for a meaningful maximal SC
of s consisting of unclustered vertices. If such an SC is found s changes from orange
to yellow. For a detailed description of the post processing and a proof of the following
lemma see the full version [16].

Lemma 2. Let v denote a blue or uncolored vertex in an SC Q. Then any coarser
possibly existing SC Q′ of v with Q⊂Q′ is also an SC of a red, orange or yellow vertex.

This is, in any coarser clustering the number of further possibly existing SCs is bounded
by the number of red, orange and yellow vertices. On the other hand, these vertices
might still induce coarser SCs, which we do not know. Thus we call the number of red,
orange and yellow vertices the uncertainty of a parfree-clustering. Figure 3(a) shows an
example of uncertainty one.

(a) Parfree-clustering. (b) Cut-clustering. (c) Modularity-based clus.

Fig. 3. Different clusterings for karate. The parfree-clustering (a) consists of one yellow ver-
tex (round) besides blue (rectangular) and uncolored ones (diamond shaped): 4 maximal non-
singleton SCs of different size, 5 unclustered vertices, uncertainty is one. (b) Cut-clus: one small
non-singleton cluster, 27 unclustered vertices. (c) mod-clus: 4 clusters of balanced size.

4 Experiments
For the experimental analysis we used several instances of the clustering testbed of
the 10th DIMACS Implementation Challenge [12] as well as the protein interaction
network bo cluster published by Jeong et al. [13] and a snapshot of the linked wiki
pages at www.dokuwiki.org (cp. Fig. 4 or Tab. 5 in [16]). Furthermore, we consider a
large number of snapshots of the email-communication network of the Department of
Informatics at KIT [11] (cp. Tab. 6 to 8 in [16]).

Modularity analysis. Our first experiment addresses the question how close cut-
clusterings can get to a modularity-optimal tight clustering with respect to SCs, and
which modularity values can be reached in general. Thus, we focus on the best cut-
clusterings in the hierarchies with respect to this objective and compare them to refer-
ence clusterings of good modularity (mod-clusterings for short) generated with the help
of a modularity-based greedy agglomerative approach [2], as computing a modularity-
optimal clustering is NP-hard [9]. Figure 4 shows the results.
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Fig. 4. Results of the modularity analysis of cut-clusterings, modularity-based clusterings and
parfree-clusterings. The results for the email snapshots are displayed in the lower part, the upper
part addresses the remaining instances. Instances where the uncertainty of the parfree-clustering
is at most two are marked by *. In both parts the upper charts show the ratio of clustered vertices
in the cut- and parfree-clusterings and the ratio of nontrivial clusters missing the SC-property in
the modularity-based clusterings. For the upper instances the cluster sizes are shown by whisker-
bars regarding cut-, parfree- and mod-clustering with maximum (+) and minimum (•) of the
outliers. Note that values greater than 20 are printed at the edge of the displayed range. Due to
the high number of email snapshots whisker-bars are omitted for those instances.
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As expected the mod-clusterings are of higher modularity than the cut-clusterings
and prefer clusters of decent size. In contrast the cut-clusterings are finer with several
unclustered vertices (see also Fig. 3), which is due to the restriction to tight clusterings.
Nevertheless, the modularity of the latter increases with the amount of clustered vertices
and the size of the clusters.

The fact that for some instances CutC returns clusterings with a modularity much
lower than the references, however, does not necessarily mean that the cut-clustering
is far from the objective. The instance might just lack a tight clustering of better mod-
ularity. In order to find out if this is indeed the case we focus on the properties of the
parfree-clustering. As all clusters in this clustering, apart from those counted by the
uncertainty, constitute maximal SCs, small clusters and a low uncertainty indicate the
absence of a coarser tight clustering, which might provide a higher modularity. In this
case, it seems to be more appropriate to compare the modularity of the cut-clustering
to the value reached by ParFree. The Delaunay triangulations are nice examples where
the modularity gap between the cut-clustering and the mod-clustering is large, but the
parfree-clustering consists only of singleton clusters and has a low uncertainty. Thus
we can exclude the existence of a better tight clustering with high probability and sup-
pose the cut-clustering, which is basically the same as the parfree-clustering, is close
to a modularity-optimal tight clustering, although the reference clustering has a much
higher modularity. Note that all clusters in the references of the Delaunay triangulations
miss the SC-property. We derive the existence of such degenerated cases from the fact
that the asymptotic modularity of some graph classes is provably high [7] whereas the
same classes often lack any meaningful SC such that CutC has no chance to return a
nontrivial clustering of good modularity. In this light CutC competes surprisingly well.

For the main part of the email snapshots and for the netscience graph CutC reaches
modularity values very close to the references, which is rather unexpected since CutC
is not designed to optimize modularity. We further observe that the absolute modular-
ity values for these instances are quite high and the amount of clusters in the mod-
clusterings that miss the SC-property decreases. The common trend of both modular-
ity curves finally reveals that most instances are either difficult for both clustering ap-
proaches or for none of them. We conjecture that if there exists a tight clustering of
good modularity, CutC most often finds it.

Expansion analysis. In order to answer the question if there is an advantage from
knowing the quality guarantee given by the parameter of CutC, our second experiment
compares this guarantee to the trivial lower bound Ψ` induced by global minimum cuts.
We further study the non-trivial lower bound Ψa to get an idea on the exact expansion
values. Recall Table 2 for an overview of the different intra-cluster expansion bounds.
We consider the same cut-clusterings and mod-clusterings as before, however, we skip
the Delaunay triangulations and the football graph, as for those instances CutC returns
only singleton clusters. The results are given in Figure 5.

We observe that the trivial lower bound Ψ` in both clustering categories follows a
similar trend and stays below the guarantee Ψg for most of the instances, which con-
firms the guarantee as a truly meaningful bound. A value that exceeds Ψg appears for
example if all the non-singleton clusters are close to cliques of maximum edge costs.
This yields a trivial bound close to two times the maximum edge costs, while Ψg is
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275 snapshots of the email network of the Department of Informarics at KIT.

Ψg ,Ψ`cut,Ψacut Ψ`mod,Ψamod

Fig. 5. Trivial and non-trivial bounds on the intra-cluster expansion of cut-clusterings and
modularity-based clusterings. For definitions of these bounds recall Table 2. In both charts the
guarantee Ψg is normalized to one, further values are displayed proportional. Instances where
Ψucut (not shown) meets the maximum lower bound in the cut-clustering are marked by *. For
those instances the maximum lower bound equals the true intra-cluster expansion in the cut-
clustering. In the lower chart Ψ`cut is shown by the monotone curve different from one, Ψ`mod is
given by the dashed line close to Ψ`cut; Ψacut and Ψamod are represented by the remaining solid
and dashed line. For the sake of readability Ψumod is omitted in the lower chart.

bounded by the maximum edge costs. On the other hand, the non-trivial lower bound
Ψa for the cut-clusterings clearly outperforms the guarantee, and thus, reveals that the
actual intra-cluster expansion in the cut-clusterings is even higher than guaranteed. At
the same time it also exceeds the analog bound for the mod-clusterings, and hence,
suggests that the cut-clusterings also outperform the expansion of the modularity-based
reference clusterings. This becomes even a fact whenever the upper bound Ψu for the
mod-clusterings drops below the maximum lower bound in the cut-clusterings, which
indeed happens for some instances. This proves a truly better intra-cluster expansion
on the latter. Finally, for some cut-clusterings we yet know the actual intra-cluster ex-
pansion, as the analog upper bound Ψu meets the lower bounds. The corresponding
instances are marked by * in the upper chart of Figure 5, for the email snapshots the
amount of those graphs is about 20%.

Conclusion. In this work we studied the behavior of the cut-clustering algorithm of
Flake et al. [3] in the light of tight clusterings and the quality measures modularity and
expansion. We introduced a characterization of different types of tight clusterings and
gave a simple but efficient approach for constructing all different levels of tight clus-
terings in the cut-clustering hierarchy formed by different parameter values. Our new
approach directly computes all breakpoints in the parameter range where new clus-
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terings come up, and thus, outperforms binary search approaches in running time and
accuracy. Our experiments further exhibited that, although it is not designed to optimize
modularity, the cut-clustering algorithm fairly well combines the significance of tight
clusterings with a good modularity and a guaranteed intra-cluster expansion that is of-
ten better than trivial bounds, provided that there exists a reasonable tight clustering in
the given instance.
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